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Recap
• Random walks on undirected graphs: hitting time, commute time, cover time.

• Theorem: If G is a connected graph with n vertices and m edges, then 𝐶𝑜𝑣𝐺 ≤
2𝑚(𝑛 − 1).

• Electrical networks and connections to random walks.

• Stationary distribution of random walk: uniform over edge/directions, or equivalently 
each node has probability proportional to its degree.



Something completely different(?): electrical networks

Consider a graph 𝐺 where on each edge we have a resistor of some resistance. 

• Say we connect a battery of some voltage 𝑉𝑏𝑎𝑡𝑡  between two nodes A and B (so 𝑉𝐴 − 𝑉𝐵 =
𝑉𝑏𝑎𝑡𝑡, and let’s for convenience say 𝑉𝐵 = 0). 

• Then each node in the graph will have a voltage (also called “potential”) and each edge will 
have some current flowing in some direction.

Can think of voltage as like “height”, and resistors like little water wheels or filters.



Something completely different(?): electrical networks

Voltages and currents can be computed using the following two rules.

• Kirchoff’s law: current is like water flow: for any node not connected to the battery, flow in = 
flow out.

• Ohm’s law: 𝑉 = 𝐼𝑅.  Here, 𝑅 is resistance, 𝑉 is the voltage drop, and 𝐼 is the current flow.

Effective resistance 𝑅𝑢𝑣 between 𝑢 and 𝑣: connect up battery, measure current, 𝑅𝑢𝑣 =
𝑉

𝐼
. 



Electrical networks and random walks

Consider a graph 𝐺, fix two 
distinguished nodes A,B.

Let 𝑝𝑢 be the probability a 
random walk starting from 𝑢 
reaches A before it reaches B.

Consider a random walk. Consider placing a 1-volt 
battery between A and B

Let 𝑉𝑢 be the voltage at node 𝑢.

Then 𝑝𝑢 = 𝑉𝑢.

• Solving for 𝑝𝑢: 𝑝𝐴 = 1, 𝑝𝐵 = 0, and for all 𝑢 ∉ {𝐴, 𝐵} we have 𝑝𝑢 =
1

deg(𝑢)
σ𝑣: 𝑢,𝑣 ∈𝐸 𝑝𝑣.

• Solving for 𝑉𝑢: 𝑉𝐴 = 1, 𝑉𝐵 = 0, and for all 𝑢 ∉ {𝐴, 𝐵} we have flow in = flow out, which 

means 𝑉𝑢 =
1

deg(𝑢)
σ𝑣: 𝑢,𝑣 ∈𝐸 𝑉𝑣.



Another connection: effective resistance and commute time

Theorem: In a connected graph 𝐺 with 𝑚 edges, each of which is a unit resistor, for any 
two nodes 𝑢, 𝑣 we have 𝐶𝑢𝑣 = 2𝑚𝑅𝑢𝑣.

• For example, on a line graph of 𝑛 nodes and 𝑛 − 1 edges, the commute time between 
the two endpoints is exactly 2 𝑛 − 1 2.

• Note that if 𝑢, 𝑣 are neighbors then 𝑅𝑢𝑣 ≤ 1, so 𝐶𝑢𝑣 ≤ 2𝑚.   (So, this is another proof of 
the main lemma from last time).



Another connection: effective resistance and commute time

Example computation 
of effective resistance

Theorem: In a connected graph 𝐺 with 𝑚 edges, each of which is a unit resistor, for any 
two nodes 𝑢, 𝑣 we have 𝐶𝑢𝑣 = 2𝑚𝑅𝑢𝑣.



Key lemma

Lemma: Fix some vertex 𝑣.  For each node 𝑥 ≠ 𝑣, place battery of voltage 𝐻𝑥𝑣 with 
positive terminal at 𝑥 and negative terminal at 𝑣.  Then deg(𝑥) current will flow out of 
each 𝑥 ≠ 𝑣 and 2𝑚 − deg(𝑣) current will flow into 𝑣. 

Proof:

• Let’s define 𝑣 to have voltage 0, so each node 𝑥 has voltage 𝐻𝑥𝑣 (𝐻𝑣𝑣 = 0).

• For 𝑥 ≠ 𝑣, by definition of hitting time: 𝐻𝑥𝑣 = 1 +
1

deg(𝑥)
෍

𝑤: 𝑥,𝑤 ∈𝐸

𝐻𝑤𝑣

• Current on edge (𝑥, 𝑤) is (𝑉𝑥 − 𝑉𝑤)/1.  So, total current flowing out of 𝑥 ≠ 𝑣 is:

෍

𝑤: 𝑥,𝑤 ∈𝐸

𝑉𝑥 − 𝑉𝑤  = ෍

𝑤: 𝑥,𝑤 ∈𝐸

𝐻𝑥𝑣 − 𝐻𝑤𝑣  =  deg 𝑥 ⋅ 𝐻𝑥𝑣 − ෍

𝑤: 𝑥,𝑤 ∈𝐸

𝐻𝑤𝑣  = deg(𝑥) .

• And so 2𝑚 − deg(𝑣) current is flowing into 𝑣.



Key lemma #2

Lemma: Fix some vertex 𝑣.  For each node 𝑥 ≠ 𝑣, place battery of voltage 𝐻𝑥𝑣 with 
positive terminal at 𝑥 and negative terminal at 𝑣.  Then deg(𝑥) current will flow out of 
each 𝑥 ≠ 𝑣 and 2𝑚 − deg(𝑣) current will flow into 𝑣. 

Lemma: Fix some vertex 𝑢.  For each node 𝑥 ≠ 𝑢, place battery of voltage 𝐻𝑥𝑢 with 
negative terminal at 𝑥 and positive terminal at 𝑢.  Then deg(𝑥) current will flow into 
each 𝑥 ≠ 𝑢 and 2𝑚 − deg(𝑢) current will flow out of 𝑢.

Proof: Same (or by symmetry: if you reverse all the batteries, you reverse all the currents).

Now, let’s prove the theorem from the two lemmas.



Proof of theorem from lemmas

Lemma: Fix some vertex 𝑣.  For each node 𝑥 ≠ 𝑣, place battery of voltage 𝐻𝑥𝑣 with 
positive terminal at 𝑥 and negative terminal at 𝑣.  Then deg(𝑥) current will flow out of 
each 𝑥 ≠ 𝑣 and 2𝑚 − deg(𝑣) current will flow into 𝑣. 

Lemma: Fix some vertex 𝑢.  For each node 𝑥 ≠ 𝑢, place battery of voltage 𝐻𝑥𝑢 with 
negative terminal at 𝑥 and positive terminal at 𝑢.  Then deg(𝑥) current will flow into 
each 𝑥 ≠ 𝑢 and 2𝑚 − deg(𝑢) current will flow out of 𝑢.

• Consider adding the voltages from the two experiments.  So, voltage drop from 𝑢 to 𝑣 of 
𝐻𝑢𝑣 + 𝐻𝑣𝑢 = 𝐶𝑢𝑣. 

• If add voltages, then currents add too by linearity.  This gives us 2𝑚 units of current 
flowing out of 𝑢 and 2𝑚 flowing into 𝑣.

• Since no current flowing into/out of any other node, can view as just a battery between 
𝑢 and 𝑣.

• Using 𝑉 = 𝐼𝑅 we get 𝐶𝑢𝑣 = 2𝑚 ⋅ 𝑅𝑢𝑣.



Markov Chains

A Markov Chain can be thought of as a random walk on a weighted directed graph: 

• 𝑛 states.

• An 𝑛 × 𝑛 transition matrix 𝑃 where 𝑃𝑖𝑗 is the probability of moving to state 𝑗 given 
that you currently are in state 𝑖.

• If you describe your current state as a row vector 𝑞 then your next state is 𝑞𝑃.

• Often used to describe probabilistic processes.



Markov Chain Example
Say you are planning to work on your homework but are easily distracted:

Work

Start

0.9

Email/facebook

0.1

0.7

0.1

Browse Web

0.2

0.60.2

0.2

Work Email Web

Work 0.9 0.1 0

Email 0.2 0.7 0.1

Web 0.2 0.2 0.6

= 0.9 0.1 0

0.9 0.1 0

0.2 0.7 0.1

0.2 0.2 0.6

1 0 0



More definitions

A Markov Chain can be thought of as a random walk on a weighted directed graph: 

• 𝑛 states.

• An 𝑛 × 𝑛 transition matrix 𝑃 where 𝑃𝑖𝑗 is the probability of moving to state 𝑗 given 
that you currently are in state 𝑖.  

• If you describe your current state as a row vector 𝑞 then your next state is 𝑞𝑃.

• If underlying graph (directed edges with nonzero probability) is strongly connected, 
then it’s irreducible.

• Irreducible Markov Chain is aperiodic if for every start state 𝑞 there exists some 𝑇 
such that 𝑞𝑃𝑇 has nonzero probability on every state.

For example, a random walk on a complete bipartite graph would be irreducible 
but not aperiodic.  If you add self-loops, then it becomes aperiodic.



More definitions

A Markov Chain can be thought of as a random walk on a weighted directed graph: 

• 𝑛 states.

• An 𝑛 × 𝑛 transition matrix 𝑃 where 𝑃𝑖𝑗 is the probability of moving to state 𝑗 given 
that you currently are in state 𝑖.

• If you describe your current state as a row vector 𝑞 then your next state is 𝑞𝑃.

• If underlying graph (directed edges with nonzero probability) is strongly connected, 
then it’s irreducible.

• Irreducible Markov Chain is aperiodic if for every start state 𝑞 there exists some 𝑇 
such that 𝑞𝑃𝑇 has nonzero probability on every state.

• A stationary distribution 𝜋 is a left eigenvector of eigenvalue 1.  That is, 𝜋 = 𝜋𝑃.



Stationary distributions

• A stationary distribution 𝜋 is a left eigenvector of eigenvalue 1.  That is, 𝜋 = 𝜋𝑃.

• This is the largest eigenvalue, because for any vector 𝑣 (even if it has negative 
entries), the sum of absolute values cannot increase when multiplying by 𝑃.  I.e., 

𝑣 1 ≥ 𝑣𝑃 1.

• Because every row 𝑃𝑖 sums to 1, so |𝑣𝑖| = σ𝑗 |𝑣𝑖𝑃𝑖𝑗 |.  So, 𝑣𝑃 1 ≤ σ𝑖 𝑣𝑖𝑃𝑖 1 = 𝑣 1 .



Symmetric Markov chains

A Markov chain is symmetric if 𝑃 is symmetric.  E.g., a random walk on an undirected 
graph where every node has the same degree.

• For a symmetric Markov chain, all column sums are 1, so the stationary distribution is 
uniform.  [“The” stationary distribution if the MC is connected, else “a” stationary distribution if  not]

• One way to see it: columns summing to one and 𝜋 = 𝜋𝑃 means that each 𝜋𝑖 is a 
weighted average of the others.  [can you see the rest of the proof?]



Rapid Mixing

Often we will want to define a Markov chain on a “solution space” whose size is 
exponential in the natural problem parameters.  E.g., each state could be an 
assignment of values to 𝑛 variables.

In this case, we have no hope to visit the entire state space, but perhaps we can more 
quickly approach the stationary distribution?

A Markov chain is rapidly mixing if can get close to stationary in 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) steps.

Example: random walk on the cube 0,1 𝑑.  Here 𝑛 = 2𝑑.  To make this aperiodic, let’s 
say that at each step we stay put with probability ½.

➢ Equivalent walk: at each step, pick a random coordinate, replace with uniform 
random 0/1 value.



Rapid Mixing For example, a symmetric MC

• So, if |𝜆2| ≤ 1 − 𝜖, then for any constant 𝑐 it takes only 𝑇 = 𝑂
log 𝑛

𝜖
 steps to get 

𝑞 𝑇 − 𝜋
2

≤ 1/𝑛𝑐.

• What happened to irreducibility and aperiodicity?  If reducible or periodic, then 
𝜆2 = 1 so theorem is vacuous.  E.g., complete bipartite graph has eigenvector with 

all nodes on the left assigned 1/𝑛 and all nodes on the right assigned −1/𝑛 with 
eigenvalue −1. 



Rapid Mixing For example, a symmetric MC

Proof:

• Let’s say the orthogonal eigenvectors are 𝑣1, … , 𝑣𝑛 with 𝑣1 = 𝜋.

• They form a basis, so can write 𝑞 0 = 𝑐1𝜋 + 𝑐2𝑣2 + 𝑐3𝑣3 + ⋯ + 𝑐𝑛𝑣𝑛 for some 𝑐1, … , 𝑐𝑛.

• After 𝑇 steps, we have 𝑞 𝑇 = 𝑐1𝜋 + 𝑐2𝜆2
𝑇𝑣2 + 𝑐3𝜆3

𝑇𝑣3 + ⋯ + 𝑐𝑛𝜆𝑛
𝑇𝑣𝑛.

• Assuming 𝜆2 < 1 (else the theorem is vacuously true) note that this approaches 𝑐1𝜋 as 
𝑇 → ∞.  This means we must have 𝑐1 = 1.



Rapid Mixing For example, a symmetric MC

Proof:

• Let’s say the orthogonal eigenvectors are 𝑣1, … , 𝑣𝑛 with 𝑣1 = 𝜋.

• They form a basis, so can write 𝑞 0 = 𝑐1𝜋 + 𝑐2𝑣2 + 𝑐3𝑣3 + ⋯ + 𝑐𝑛𝑣𝑛 for some 𝑐1, … , 𝑐𝑛.

• After 𝑇 steps, we have 𝑞 𝑇 = 𝑐1𝜋 + 𝑐2𝜆2
𝑇𝑣2 + 𝑐3𝜆3

𝑇𝑣3 + ⋯ + 𝑐𝑛𝜆𝑛
𝑇𝑣𝑛.

• So, 𝑞 𝑇 − 𝜋
2

= 𝑐2𝜆2
𝑇𝑣2 + ⋯ + 𝑐𝑛𝜆𝑛

𝑇𝑣𝑛 2
≤ 𝜆2

𝑇 ⋅ 𝑐2𝑣2 + ⋯ + 𝑐𝑛𝑣𝑛 2 ≤ 𝜆2
𝑇.

By orthogonality Since 𝑞 0
2

≤ 𝑞 0
1

= 1



That’s it….

• Final exam will be made available today or tomorrow.

• All exams should be turned in by 11:59pm Friday night December 13 (11:59pm 
Thursday night if you are graduating this quarter)

• Can download and take it when you like: you have 24 hours to turn it in from the time 
you download the exam.  Turn it in via dropbox link.

• Please also fill in the course evals – we read them all and they are useful to us in 
improving the course.
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